
F0.R - 16
MANUAL

0 c COPYRIGHT 1985 BY METRABYTE CORPORATION

WARRANTY

All products manufactured by MetraByte are warranted against defective materials
and workmanship for a period of One Year from the date of delivery to the original
purchaser. Any product found to be defective within the warranty period will, at the
option of MetraByte, be repaired or replaced. This warranty does not apply to
products which have been damaged by improper use.

MetraByte Corporation assumes no liability for damages consequent to the use of
this product. This product is not designed with components of a level of
reliability suitable for use in life support of other extremely critical systems.

**

MetraByte Corporation
440 Myles Standish Boulevard.
Taunton, MA. 02780 U.S.A.

Phone: (508) 880-3000 Telex: 503989

TABLE OF CONTENTS

CHAPTER DESCRIPTION PAGE

1.00

1.10

1.11

2.00

INTRODUCTION ----------------------------- 1

SOFTWARE INSTALLATION AND BACKUP ----------- 1

USING THE LIBRARY _--_____-___________------ 2

DASH-16 FORTRAN SUBROUTINE LIBRARY
DESCRIPTIONS ___________________-___________ 3

ADINIT
ADCONV
D16FIX
DMASTA
DMAOFF --__________-_-____------------------ 10

DAOUT I DACn, DAOUT(m), RTNFLG) ---------- 11
DIGOUT (,,ATO"T) _-____________-__--------- 12

DIGIN (DATIN) -__________________________ 13
CNTMIn (MODE) ___-_--_-__--_____-_________ 14
CNTMOn (MODE, DATOUT) -------------------- 15
INPB (PORT) --_________-________-------- 18
INPW (PORT) ---____________--_-_________ 19
OUTB (PORT, DATOUT) -------------------- 20

OUTW (PORT, DATO”T) _____-____________-_ 21

PEEKB (MSEG, MOFF) ________-__-_-_------- 22

PEEKW (MSEG, MOFF) ---______-____________ 22

POKEB (MSEG, MOFF, DATOB) --------------- 23
POKEW (MSEG, MOFF, DATOW) --------------- 23
LOCATE (ROW, COL) ______-_________________ 24

CLRSCN (FG, BG) --------__________________ 25

BASADR, DMALEV, INTLEV, RTNFLG) -- 4
MODE, SCH, FCH, DATIN(n), RTNFLG)
DATAX, CHANX) -------------------- i?
RTNSTATUS) ____________-----______ g

3.00 LIBRARY MEMORY MAP (GLOBALS) ------------- 26

4.00 SERVICE PERFORMANCE REPORT ----------------- 27

APPENDIX A SAMPLE PROGRAM FOR A/D MODES ---------- 29

1

1.0 INTRODUCTION

The MetraByte DASH-16 Data Acquisition Fortran library is a
comprehensive set of A/D and D/A driver Functions /
Subroutines used to extend the Fortran compiler. The DASH-
16 FortranLibrary also contains a set of general purpose
I/O functions (INP, OUT, PEEK & POKE) to Write and read
bytes or words to or from a user defined I/O port or memory
location over the entire 8088/86 address range of 0 to (2-16
- 1). This allows the user to directly drive other MetraByte
I/O devices e.g. the PIO-12 Parallel I/O board directly for
a variety of control applications and also allows memory
mapped devices to be used with Fortran. The DASH - 16
Library follows the linking format as required by the
Microsoft Fortran Compiler Version 3.2, and is outlined in
the following sections.

1.10 SOFTWARE INSTALLATION AND BACKUP

The installation of the DASH-16 interface board is outlined
in the DASH-16 manual chapter 2. The selection of the BASE
address and Interrupt and DMA levels are internally set as
noted in chapter 1. (Base Address = Hex 300, DMA = 1, INT =
programmable). A BACKUP COPY SHOULD BE USED FOR PROGRAU
DEVELOPMENT AND THE MASTER DISK STORED IN A SAFE PLACE. The
disk format is Single Side Double Density DOS 1.10 format
and is read compatible for all versions of PC-DOS. Chapter 5
of the DASH-16 manual shows the hookup of the counter/timers
for external trigger of the A/D.

The DAS16FOR.LIB will support DOS 1.10 through DOS 3.00 and MS
Fortran compiler versions from 3.0 to 3.2. Programmers should use
the MS LINK.EXE which is supplied with your Fortran Compiler to
obtain upward compatibility. Do not use the LINK.EXE supplied
with DOS as several revisions and adjustments have been made in
the linker program.

1.11 USING THE LIBRARY

The DASH-16 Fortran library is used at the linker level as
most libraries. Once the users Fortran program has been
compiled according to the Fortran users guide the linker is
ready to produce an run-time EXE file. The Linker will
automatically search the Fortran libraries required to link
the standard functions. In order to link the DASH-16 library
the user will respond with DAS16FOR.LIB to the question of
LIBRARY: when asked. The session would be as follows.

A>LINK
Microsoft linker version XX

Object modules [.OBJ] filespec
Run File [FILESPEC.EXE 1: <return>
List Map [NUL.MAP]: <return>
Libraries [.LIB]: DAS16FOR

The DAS16FOR.LIB library should be the last library linked during
the link session. The data segments used in the DAS16FOR library
are labeled DATA and not DATA as in MS Fortran 3.30. This Will
still link without error< since the DGROUP combines all data
segments labeled DGROUP under one segment. See linker manual.

At this point all will be automatic. The library will be loaded
as needed by the Fortran program. When the prompt displays the
program may be run by typing the name. The following sections
will explain the library functions and the,Fortran format.

A>FILESPEC

This will execute the .EXE file and run the program

2

2.0 DASH-16 FORTRAN SUBROUTINE LIBRARY DESCRIPTIONS

All the following DASH-16 subroutines follow the Standard
Fortran functions/subroutines and may be nested up to the
limits of the compiler. Since the following library becomes
part of the Fortran library the following
function/subroutine names become RESERVED names and may not
be used as labels. The variable names used for the DASH-16
library functions are considered INTEGER*2 type for all
variables and must be adhered to or else strange errors
will occur. Using these function names as labels will
introduce bizarre run and linking errors. The library
consists of two types of functions, the unique DASH - 16
functions and the general purpose I/O type functions. The
following is a list of the functions/subroutines
incorporated in the library. The page numbers have been
added to this section also for the convenience of the user.

*****eta*** DASH _ 16 UNIQUE SUBROUTINES/FUNCTIONS **********

SUBROUTINE AND FORMAT PAGE NO.

ADINIT
ADCONV
D16FIX
DMASTA
DUAOFF
DAOUT
DIGOUT
DIGIN
CNTMIn
CNTUOn

(BASADR, DMALEV, INTLEV, RTNFLG) --------------- 4
(MODE, SCH, FCH, NOS, DATIN(n), RTNFLG) -------- 5
(DATAX, CHANX) --------------------------------- 8
(RTNSTATUS) ------------------------------------ 9
---------------_-_-_____________________---------- 10
(DACn, DAOUT(n), RTNFLG) ____--_____-___-------- 11
(DA--,-OUT) --------______-________________________ 12
(DATAIN) --------------_------------------------ 1-j
(MODE) -----------_-_-_-_______________________- 14
(MODE, DATOUT) ______________---___------------- I5

********* GENERAL PURPOSE IO FUNCTIONS *********

INPB
INPW
OUTB
OUTW
PEERB
PEEKW
POKEB
POKEW
LOCATE
CLRSCN

(PORT) ----------_-------______________________- 18

(PORT j --- 19

(PORT, DATOUT) --------------------------------- 20
(PORT, DAT~UT) --------_________________________ 21
(MSEG, MOFF) __-___-_---___-_-__---------------- 22

(MSEG, MOFF) -----------------__________________ 22

(MSEG, MOFF, DATOB) _____________-______-------- 23

(MSEG, MOFF, DATOW) ___________________-________ 23
(ROW, COL) --____-____--____-___________________ 24
(FG, BG) --------------------------------------- 25

3

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROQTINES

ADINIT (BASADR, DMALEV, INTLBV, RTNFLG)

This function initializes the DASH-16 identification
parameters in order for the library functions to be used.
The function does not have to be executed within a Fortran
module since the library has default values. If other than
the default values are used then this function must be
executed. The ADINIT function also allows the user to setup
a second board for communications with the system, however
only one board is allowed to be operational at a time. If
the user wishes to run more than one board in the system,
this command should be run for all the boards in the system
first. The parameter limits are as follows. All variable
names are INTEGER*2 type (2 Bytes length).

BASADR

DHALEV

INTLEV

RTNFLG

EXAMPLE:
C
C

C
C
C

C
C
10

= Base Address of DASH - 16 board (OlOOH to 03FOH)
This address range is checked before further
execution.

= DMA Channel number of DASH - 16 board (1 or 3)
Only channel 1 or 3 is allowed.

= INTERRUPT Level of DASH - 16 board (2 to 7)
This level is also checked for range.

= Flag Return Code for current selected function.

0000H = function successful. continue normally.
000lH = System already in use. can't continue.
0003H = BASADR variable range error, <lOOH,>3FOH
0004H = INTLEV variable range error, <2 or >7.
0005H = DMALEV variable range error, not 1 or 3

** SETUP BOARD PARAMETERS AS INTEGER * 2 TYPE **

INTEGER*2 BASADR,DMALEV,INTLEV,FLGRTN
BASADR = t300
DMALEV = #3
INTLEV = #2
FLGRTN = #0

******* EXECUTE FUNCTION CALL *******

CALL ADINIT (BASADR, DMALEV, INTLEV, FLGRTN)
IF (FLGRTN .NE. #o) GOTO 10
. USER CONTINUES PROGRAM

----- USER ERROR HANDLER, CHECK RTNFLG FOR ERRORS
END

4

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

ADCONV 1 MODE, SCH, FCH, NOS, DATIN(n), RTNFLG)

This function allows the user to collect data via the A/D
converter using one of five modes. The user also selects the
number of channels Start to Final, and the Number Of Scans
for data collection. A Scan is defined as the Start Channel
to the Final Channel (SCH to FCH). If the Start Channel
(SCH) = 0, and the Final Channel (FCH) = 7, then one scan

would collect 8 channels of data into the array DATIN(n).
The array size must be large enough to receive the data, at
least (NOS*(FCH-SCH +l) 1. If SCH = FCH then the Number Of
Scans (NOS) will be the actual number of conversions for
that channel. If 100 conversions are required on channel 3
then, SCH = FCH = 3, and NOS = 100, The array must be at
least DATIN(100) [INTEGER*2 type] in a DIMENSION
statement. In MODES 1, 2, 3 and 4 (external trigger modes)
typing ESC key will terminate the run and execute the
next Fortran statement after the ADCONV statement. This will
allow termination of data collection with out re- booting
the system. All data previously collected before Esc key
was pressed will be valid and the return flag code will be
HEX 1000. (#lOOO).

MODE = Data

0 =

1=

2 =

3 =

Collection Mode A/D only

Internal start of conversion (start on entry)
Immediate start of conversion by software and
collect the specified number of conversions
to the specified array. This routine is
program control only (NO DMA).

External trigger for each conversion.
Transfer data to the specified array under
program control. The A/D starts with the
external trigger for each conversion. The
number of conversions is determined by the
NOS and the number of channels. This mode is
also program control data transfer (NO DMA).

External trigger for each block (SCH-FCH) of
channels (NO DMA) under program control. An
error code will be returned if the limits are
exceeded.

External trigger for each conversion (DMA).
This routine collects the data after each
external trigger and transfers the data to
the array via DMA. The user remains in this
routine until all the specified conversions
are completed. The user may interrupt the

5

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

data collection by pressing the Esc key.

4 = External trigger for each block (SCH-FCH) of
channels using DMA. An error code will be
returned if the limits are exceeded. Although
DMA transfer, this mode can only be driven at
interrupt rates.

5 = External Trigger Background DMA Data
Transfer. This mode allows the user to
collect data in the background while running
a secondary program in the foreground. The
Background data collection runs at the
maximum transfer rate of the A/D converter or
the rate of the external trigger. 'It is the
users responsibility to insure the variable
data array is not changed during data
collection. The user may check the status of
the data transfer at any time by the DMASTA
function which returns the current number of
conversions and the current DASH-16 board
status. The user may terminate the data
collection before the normal end of transfer
by the DMAOFF function.

6 = External Trigger DMA mode Auto-Initialize.
This mode allows the user to collect data
into the specified array continuously in the
background. The data is collected until a
DMAOFF function is executed. It is the users
responsibility to disable the DMA operation
when data collection is no longer required.

NOTE: The output of counter 2 may be internally
connected to the A/D trigger input (IPO) by
adding 16 decimal (#lo hex) to the mode.

EXAMPLE: MODE = 4t16 Will be mode 4 and
counter 2 output will be the Trigger for
the A/D converter.

SCH = Start Channel (0 - 15 Single Ended) (0 - 7
Diff.) This channel is automatically reloaded when
the FCH (final channel) is reached in the MUX scan
register. An error code will be returned if the
limits are exceeded.

PCH = Final Channel (0 - 15 Single Ended) (0 - 7
Diff.). This channel is automatically reloaded
when the SCH (start channel) reloads the MUX scan

6

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

register. An error code will be returned if the
limits are exceeded.

NOS = Number Of Scans for each group of channels
specified by SCH and FCH. NOC (number of
conversions) is defined by the equation, NOC = NOS
* (FCH - SCH + 1). The number of conversions
must be with in the range of NOC max = 32760, NOC
min = 1. An error code will be returned if the
limits are exceeded.

RTNFLG = Flag Return code for status of function selected.

HEX CODE 0 = Transfer ok
1 = SCH, FCH channel limits exceeded for

Differential
2 =

3
4
5
6

100
1000

SCH, FCH channel limits exceeded for Single
Ended
NOC Limit error < 1 or > 32760
A/D DMA mode or Board Busy
Time out. No EOC from convertor
DMA Vector level range error
DMA / Data collection hardware error
Function Terminated by Esc key sequence

DATIN(n) = Data Transfer variable INTEGER*2 type Only. !!I
This variable is used for data transfer and may be
a single variable if only a single channel is to
be converted. DATIN(~) may be an array of max
length less than or equal to 32760 for the data
conversion. This is due to the fact of segments Of
lb bits and a lb byte boundary constraint. The
variable must be a word (2 bytes) type integer.
The size n = NOS*(FCH-SCH+l) minimum.

EXAMPLE:
C **** INITIALIZE VARIABLE'S TYPE FOR USE WITH FUNCTION ****

INTEGER*2 MODE, SCH, FCH, NOS, RTNFLG DATIN
C
C **** DIMENSION DATA ARRAY FOR (FCH7-SCHO+l)*lOO = 800
C

DIMENSION DATIN (800)
C
C ***** INITIALIZE VARIABLES ******
C

MODE0 = 0
SCHO = 0
FCH7 = 7
NOSlOO = 100

7

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

C
C
C
C
C

C
C
C
C
C
C
400
401

RTNFLG = 0

******* COLLECT DATA FROM A/D INTO ARRAY *******
- THE DATA WILL BE COLLECTED UNDER PROGRAM CONTROL -

CALL ADCONV (MODEO, SCHO, FCH7, NOSlOO, DATIN(l), RTNFLG)
IF (RTNFLG .NE. 0) GOT0 400

. USER CONTINUES PROGRAM HERE
.
.

****** ERROR HANDLER IF RTNFLG NOT ZERO ******

WRITE (*,401) RTNFLG
FORMAT (1X, 'ERROR DURING A/D CONVERSION FUNCTION IS ', 12)
END

D16FIX (DATAX, CHANX)

This function allows the user to condition the A/D data
collected from ADCONV in mode 5 or 6. The A/D data is
supplied by the variable DATAX and the function returns two
values. The first value is the CHANNEL the data was
collected on and returns it to CHANX variable. The second
value is returned as a function value in the form FIXDATA =
DlbFIX (DATAX, CHANX), where FIXDATA stores the 12 bit A/D
integer data in the range 00 to 4095 for unipolar and 00 +/-
2048 for bipolar settings of the DASH-16.

EXAMPLE:
C ***** ASSUME ARRAY OF DATA DATIO(1000) WAS COLLECTED ****
C

INTEGER*2 DATIO,DATX,CHANX, J
C
C **** DECLARE THE FUNCTION AS AN INTEGER FUNCTION ***
C

INTEGER*2 DlbFIX
n
L

DIMENSION CHANX(~OOO),DATX(~OOO),DATIO(~OOO)
C
C MAKE NEW ARRAY OF FIXED DATA AND ASSOCIATED CHANNEL #
C

DO 100 J=l,lOOO
DATX(J) = D16FIX (DATIO(J), CHANX(J)J
100 CONTINUE

C
STOP
END

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

DMASTA (RTNSTATUS)

This routine allows the user to monitor the status of the
DASH-16 while it is collecting data in mode 5 or 6. The
routine may be either a subroutine for just the current
status or a function for the status and the current number
of conversions. If the function is executed and mode 5 is
inactive the returned value will be 0 else the returned
value will be the current number of conversions. The status
is returned in either case. If the word count = 0 and the
DMASTA function is executed then a -32767 or some other
negative value will return. The bit assignments for the
StatUS corresponds to the DASH-lb CONTROL register and
STATUS register found in sections 3.5 and 3.6 of the DASH-lb
manual.

--- --- ---

15 14 13
--- --- ---

DASH - lb
SECTION 3

--- I_-- I--- i

INTEGER BIT ASSIGNMENT

CONTROL REGISTER DASH - lb STATUS REGISTER
6 DASH-lb MANUAL SECTION 3.5 DASH-16 MANUAL
--- I--- I--- I--- I--- ___1___1_-_1___l___l---l---~---

EXAMPLE:
C ***** SETUP AD MODE 5 AND ARRAYS ******
C

C

C
C
C
C

C

C
C
C
100

C
200

INTEGER*2 DATIN, NOC, DASlbSTAT, RTNFLG, DMASTA

DIMENSION DATIN (1024)

--- SETUP COUNTER 0 FOR 1 KHz TICKS ---
-- CONNECT CNTR 0 OUT TO TRIG IN, OP0 TO CNT0 GATE IN. --

CALL CNTMO (2,1000)

IF (ADCONV(5, 1, 1, NOSlOO, DATIN(l), RTNFLG) .NE. 0))
@ GOT0 400

--- READ STATUS AND PRINT THE CONVERSION NUMBERS ---

NOC = DMASTA (DAS16STAT)
IF (NOC .GT. 0 .AND. NOC .LE. NOSl00) GOT0 200
GOT0 500

WRITE (*,201) NOC

9

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

201 FORMAT (IX, 'THE CURRENT CONVERSION IS ',I51
GOT0 100

c
400 ERROR HANDLER ROUTINE PRINT ERROR
500 END

DMAOFF

This routine allows the user to terminate the DMA data
collection in mode 5 or 6 of the ADCONV function. This
function does not have any variables associated with it and
may be used any time the user wishes to reset the
dmafinterrupt hardware to a known inactive state. This
routine MUST be executed before termination of program if
modes 5 or 6 are used.

EXAMPLE:

****** INITIATE A TERMINATE DMA ******

CALL DMAOFF
END

10

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

DAOUT (DACN, DATOUT(n), RTNFLG)

This function allows the user to transfer data to a selected
D/A converter channel or both D/A channels with one command.
The D/A converters are 12 bit allowing the range of 0 to
4095 decimal. The DAOUT functions variables are all
INTEGER*2 type. The function DATOUT(n) may be any INTEGER
variable name or array. If both D/A'S are selected then the
DATOUT(n) is expected to be an array of two. The return
flag, RTNFLG, will return a value of 0 if all O.K. or a
value of 1 if the DAC's have been called by another user
task.

DACN =

RTNFLG =

DATOUT(n) =

EXAMPLE:

D/A Converter Selected for output

0 = D/A converter channel 0
1 = D/A converter channel 1
2 = Both D/A converters 0 a 1

Return flag code for multitask

0 = transfer completed all OK
1 = function previously called by another

task and data transfer is incomplete.
No transfer takes place.

INTEGER*2 (2 byte) Data variable.
If DACn = 0 or 1 then DATOUT(n) may be a
single INTEGER variable or an Array. If DACn
= 2 then the function will expect the data to
be an INTEGER Array and n will point to DAC
channel 0.

C ***,** SETUP INTEGER VARIABLES

INTEGER*2 DAC, DATOUT, RTNFLG
C

DAC = 0
DATOUT = #400
RTNFLG = 0

c
C ***** TRANSFER TO DAC CHANNEL
C

0 *****

CALL DAOUT (DAC, DATOUT, RTNFLG)
IF (RTNFLG .NE. 0) GOT0 10

C
C USER PROGRAM CONTINUES

.

11

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

.

10 PROCESS RTNFLG RETURN CODE FOR MULTI-TASK
C --------- IF RTNFLG = 1 THEN _----------
C OUTPUT RTNFLG FOR SOMEONE ELSE IS USING THE

DIGOUT (DATOUT)

SYSTEM

This function allows the user to transfer a four bit value
(bits 3, 2, 1, 0) in the range of 0 to 15 to the digital
output port on the DASH-16. The digital port is limited to
4 bits range, and the function passes only the least
significant four bits MOD(2^4 - 1). The variable must be of
INTEGER*2 type.

DATOUT = data to be transferred. (00 to 15) DECIMAL

EXAMPLE:

C
C

C
C
C

C
C
C

C
C
C

C
C
C

****** SETUP DATA TO BE TRANSFERRED ******

INTEGER*2 DATOUT
DATOUT = #03

***** TRANSFER DATA TO DIGITAL PORT *****

CALL DIGOUT (DATOUT)

**** TRANSFER A CONSTANT VALUE FOR DATA ****

CALL DIGOUT (15)

** TRANSFER A INTEGER USING A FUNCTION AS A VALUE **

CALL DIGOUT (IABS(7.45))

-- THE DATA TRANSFERRED IS THE INTEGER VALUE OF 7 --

END

12

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

DIGIN (DATAIN)

This function allows the user to read the four bits of data
available at the digital input port on the DASH-16 board.
The data range is returned INTEGER*2 format in the range of
0 to 15. The INTEGER variable DATAIN receives the data. This
function may also be used directly with conditional
statements.

DATAIN = INTEGER*2 data variable for data transfer.

EXAMPLE:
C ***** SETUP VARIABLE FOR DATA TRANSFER *****
C

INTEGER*2 DATAIN, X, DIGIN
C

C
C
400
401
C
C

DATAIN = 0

****** READ DIGITAL INPUT PORT BITS 0,1,2,3 ******

X = DIGIN (DATAIN)

****** USE FUNCTION IN CONDITIONAL STATEMENT ******

IF (DIGIN (DATAIN) .EQ. 4) GOTO 400

. PROGRAM CONTINUES IF NOT EQUAL TO 4

. DATA IS ALSO PASSED TO VARIABLE DURING EXECUTION

WRITE (*,401) DATAIN
FORMAT (1X, 'THE DIGITAL PORT HAS A VALUE OF ,I2)

. . . DIGITAL INPUT PORT WAS 4

C *** PASS FUNCTION VALUE TO TWO VARIABLES TOGETHER ***
C

X = DIGIN (DATAIN)
n

G --- BOTH X AND DATAIN HAVE THE DIGITAL PORT DATA ----
C THE VARIABLE DATAIN MUST BE A NAME FOR DATA TO BE
C TRANSFERRED IN. UNKNOWN ERRORS WILL OCCUR IF A CONSTANT
C IS USED.
C

END

13

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

CNTHIn (MODE)

This function allows the user to read the selected counter
in one of two modes,Latched or Non-latched. There are three
counters available to the user and the selected counter is
specified by "n", where n is 0, 1, 2. All three counters are
completely independent. The CNTMIn function may be used in
conditional statements as shown in the example. The MODE
variable must be of the INTEGER*2 type. The return data is
also of the INTEGER*2 type and the receiving variable must
be tvoe matched. The data ranae returned by the function is
in the range of 0 to 65535 (0000 to #FFFF) -16 bits.

MODE = Selects one of two read modes.

EXAMPLE:

0 = UN-Latched read on the fly (dynamic)

>= 1 = Latched, Data is latched prior to reading
This mode is active for any value except 0.

C
C
C

C
C
C

C
C
C

C
C
C

400 WRITE (*,401) CNTUIl(MODE)
401 FORMAT (1X, 'THE CURRENT VALUE OF THE COUNTER IS ',15)

**** DECLARE VARIABLE TYPES ****

INTEGER*2 MODE,DATINO,DAT
MODE = 1

INl,DATIN2,CNTMIO,CNTMIl,CNTM ,I2

***** READ COUNTER 0 TO VARIABLE ******

DATINO = CNTMIO (MODE)

***** READ COUNTER 1 TO VARIABLE ******

DATINl = CNTMIl (MODE)

***** READ COUNTER 2 TO VARIABLE ******

DATIN2 = CNTHIZ (MODE)

***** USE COUNTER 1 WITH CONDITIONAL STATEMENTS *****

IF (CNTMIl (MODE) .GE. 1000) GOT0 400

. CONTINUE PROGRAM, COUNTER IS LESS THAN 1000
.
.

14

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

CNTMOn (MODE, DATOUT)

This function allows the user to load the selected counter
with the value specified by the DATOUT integer value. There
are three counters available to the user, where n = 0, for
counter 0, 1 for counter 1, and 2 for counter 2. Each
counter is independent from the others. The selected counter
may be initialized (loaded) in one of six modes for user
versatility. The counters may be programmed to be a divider,
a programmable event counter, a programmable digital one
shot and a programmable real time clock. The counters may be
connected in almost any configuration at the 37 pin edge
card connector, (refer to the DASH -16 manual for the
various connections).

MODE = Selects the current operating mode for the
counter. The mode value range is 0 to 5. any
attempt to load a value less than 0 will load 0,
and any value larger than 5 will load 5.

0 = Output goes high on terminal count. The
output remains high until Re-loaded. The output
will be set low upon execution and
starts counting. If this mode is entered while the
counter is counting the counter will stop until
the new count value is loaded and then start a new
count with the new values entered.

1 = Programmable one-shot. Output will go low on
the count following the rising edge of the gate
input. The output will go high on the terminal
count. If a new value is loaded while the output
is low it will not affect the duration of the one-
shot pulse until the succeeding trigger.

The one-shot is retriggerable, hence the output
will remain low for the full count after any
rising edge of the gate input.

2 = Rate Generator. Divide by N counter. The
output will be low for one period of the input
clock. The period from one output pulse to the
next equals the number of input counts specified
by the DATOUT variable. Reloading will change the
rate on the next count cycle. The counter will
start counting at execution of this function.

The gate input, when low, will force the output

15

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

high. When the gate input goes high, The counter
will start from the initial count.

3 = Square Wave Rate Generator. Similar to mode
2 except that the output is a square wave (50%
duty cycle). The counter will remain in the
square wave state and at the rate programmed until
reloaded. The frequency of the square-wave iS
defined as, l,OOO,OOO / DATOUT.

The gate input, when low, will force the output
high. When the gate input goes high, The counter
will start from the initial count.

4= Software Triggered Strobe. The output goes
low upon execution of function and starts counting
at the number value of DATOUT. On terminal count,
the output will go low for one input clock period,
then go high again. If the counter is reloaded
between output pulses the present period is not
affected, but the subsequent period will reflect
the new value. The count will be inhibited while
the gate input is low.

5 = Hardware Triggered Strobe. The counter
will start counting after the rising edge of the
trigger input and will go low for one clock period
when the terminal count is reached. The counter is
retriggerable. The output will go low until the
full count after the rising edge of any trigger.

DATOUT = Data value to load counter with. The variable is
expected to be INTEGER*2 type. The range of the
variable for all modes is 2 to 65535 (16 bits). Any
attempt to load a number less than 2 will automatically
load the value 2. Any attempt to load a number larger
than 65535 will then load MOD(2^16 - 1).

NOTE:
Counters 1 and 2 of the DASH-16 are Cascaded to make up a 32
bit counter. The counters 1 and 2 have a 1 MHz input clock
and Counter 0 has a 100 KHz clock input. To use counters 1
and 2 as a rate timer (real time clock) then the output
ticks will be defined by:

where:
FREQUENCY = lo**6 f (CNTM~ * CNTM~)

CNTMl and CNTM2 are the data values loaded into the counter.
All other modes are available to the user. Counter 0 as a

16

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

real time clock is defined by:
FREQUENCY = lo**5 / CNTMO data

For more information on the counter timers on the DASH-16 refer
to Chapter 5 of the DASH-16 manual.

EXAMPLE:

C
C

C

C
C
C

C
C
C

C
C
C

C
C
C
C

:
C

C
C
C

***** SETUP VARIABLE TYPES ******

INTEGER*2 DATOO, DATOl, DAT02, MODEl, MODE2, MODE3, MODE5
INTEGER*2 BASADR

BASADR = t300
DATOO = 1000
DATOl = 4
DATO2 = 250
MODE5 = 5
MODE3 = 3
MODE2 = 2
MODE1 = 1

**** SETUP COUNTER 0 FOR EXTERNAL HARDWARE TRIGGER ****

CALL CNTMOO (ItODES, DATOO)

**** SETUP COUNTER 1 FOR DIVIDE BY N COUNTER ****

CALL CNTMOl (MODEZ, DATOl)

**** SETUP COUNTER 2 FOR DIVIDE BY N COUNTER ****

CALL CNTMOZ (HODEZ, DAT02)

* Cascade Counter 1 and Counter 2 to generate a 1 KHz wave *

SETUP COUNTER 0 TO USE THE INTERNAL 1OOKHz ON BOARD
REFERENCE. TO DO THIS OUTPUT A BYTE t02 TO THE COUNTER
CONTROL REGISTER AT BASE ADDRESS + 10

CALL OUTB ((BASADR+10),#02)

COUNTER 0 IS NOW INTERNALLY REFERENCED TO 100,000 Hz

END

17

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

INPB (PORT)

This function allows the user to input data from a specified
I/O port. The data transferred is in BYTE format (0 to 255).
The variable PORT is a INTEGER*2 type and has the full range
of the 8086/8088 processor of MOD(2-16 - 11, (0 to 65535).
This function may be used with conditional statements as
shown in the examples. INPB performs the same function as
the IN Byte instruction in assembly language. The data is
transferred using MOD(2-8 - 1) format.

PORT = I/O Address in the rance of MOD(2^16 - 1)
[0 tog-65535 1.

EXAMPLE:

C
C

C
C
C

C
C
C

C
C
C

C

C
C
C
400
401

*** SETUP PORT VARIABLE ***

INTEGER*2 PORT, PRTDAT, INPB
PORT = t3F8

**** READ PORT ****

PRTDAT = INPB(PORT)

**** READ PORT WITH CONSTANT AS VARIABLE ****

PRTDAT = INPB (13PS)

**** USE FUNCTION WITH CONDITIONAL STATEMENTS ****

IF (INPB(

.

PORT) .EQ. 1180) GOT0 400

CONTINUE NOT EQUAL TO 1180
.
.

---- IF PORT IS #80 EXECUTE THIS PROGRAM ----

WRITE (*,401) INPB(PORT)
FORMAT (IX, 'THE VALUE AT THE PORT IS ',13)
END

18

DASH-16 FORTRAN LIBRARY DESCRIPTION OP LIBRARY SUBROUTINES

This function allows the user to input data from a specified
I/O port. The data transferred is in WORD format (0 to
6553 5) * The variable PORT is a INTEGER*2 type and has the
full range of the 8086/8088. processor of MOD(2-16 - l), (0
to 65535). This function may be used with conditional
statements as shown in the examples. INPW performs the same
function as the IN Word instruction in assembly language.
The data in is Low Byte from PORT and High Byte form PORT+l.
The data is transferred using MOD(2^I6 - 1) format.

INPW (PORT)

PORT = I/O Address in the range of MOD(2^16 - 1)
[0 to 65535 1.

EXAMPLE:

C
C

C
C
C

C
C
C

C
C
C

C

C
C
C
400
401

*** SETUP PORT VARIABLE ***

INTEGER*2 PORT, PRTDAT, INPW
PORT = #3Fl7

**** READ PORT ****

PRTDAT = INPW(PORT)

**** READ PORT WITH CONSTANT AS VARIABLE ****

PRTDAT = INPW (#3P8)

**** USE FUNCTION WITH CONDITIONAL STATEMENTS ****

IF (INPW(PORT) .EQ. t8000) GOT0 400

. CONTINUE NOT EQUAL TO #8000
.
.

---- IF PORT IS t8000 EXECUTE THIS PROGRAM ----

WRITE (*,401) INPW(PORT)
FORMAT (1X, 'THE VALUE AT THE PORT IS ',15) -._-

19

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

OUTB (PORT, DATOUT)

This function allows the user to output data to a specified
I/O port. The data transferred is in BYTE format (0 to 255).
The variable PORT is a INTEGER*2 type and has the full range
of the 8086/8088 processor of MOD(2^16 - 11, (0 to 65535).
This function may be used with conditional statements as
shown in the examples. OUTB performs the same function as
the OUT Byte instruction in assembly language. The data is
transferred using MOD(2^8 - 1) format.

PORT = I/O Address in the range of MOD(2^16 - 1)
1 0 to 65535 1.

DATOUT = Byte Data to output. The data is MOD (2-8 - 1).

EXAMPLE:

C
C

C
C
C

C
C
C

*** SETUP PORT VARIABLE ***

INTEGER*2 PORT,DATOUT
PORT = t3F8
DATOUT = #F3

**** WRITE DATA TO PORT hex 3F8

CALL OUTB (PORT, DATOUT)

**** WRITE PORT WITH CONSTANT AS VARIABLE ****
**** OUTPUT hex F3 TO PORT hex 3F8 ****

CALL OUTB (#3FB, #F3)
END

20

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

OUTW (PORT, DATOUT)

This function allows the user to output data to a specified
I/O port. The data transferred is in WORD format (0 to
65535). The variable PORT is a INTEGER*2 type and has the
full range of the 8086/8088 processor of MOD(2^16 - l), (0
to 65535). This function may be used with conditional
statements as shown in the examples. OUTW performs the same
function as the OUT Word instruction in assembly language.
The output is Low Byte to PORT and High Byte to PORT+l. The
data iS transferred using MOD(2^16 - 1) format.

PORT = I/O Address in the range of MOD(2-16 - 1)
[0 to 65535 1.

DATOUT = Byte Data to output. The data is MOD (2-16 - 1).

EXAMPLE:

C *** SETUP PORT VARIABLE ***
C

INTEGER*2 PORT,DATOUT
PORT = #3F8
DATOUT = #lOF3

C
C **** WRITE DATA TO PORT hex 3F8

CALL OUTW (PORT, DATOUT)
C
C **** WRITE PORT WITH CONSTANT AS VARIABLE ****
C **** OUTPUT hex lOF3 TO PORT hex 3F8 ****
C

CALL OUTW (#3P8, #lOF3)
END

21

DASR-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

PEEKB (MSEG, MOFF)

This function allows the user to READ a byte from any memory
location by defining the SEGMENT and OFFSET. The byte is
written to location MSEG:MOFF. This function performs the
same as the MOV ES:[OFFSET regl, reg in 8086/88 assembly
language. The variables are INTEGER*2 type.

EXAMPLE:

C
C
C

C

100

**** DECLARE VARIABLES ****

INTEGER*2 NUMB, MSEG, MOFF, PEEKB

*** DECLARE SELECTED ADDRESS ***

MSEG = #FOOO
MOFF = #OOOO

**** GET BYTE AT MEMORY LOCATION ****

NUMB = PEEKB (MSEG, MOFF)

WRITE (*, 100) NUMB
FORMAT (1X, 'THE MEMORY BYTE IS ', 15)
END

PEEKW (MSEG, MOFF)

This function is the same as the PEEKB function except it
returns a 16 bit integer word to the variable. All variables
are INTEGER*2 type also.

EXAMPLE:

C **** DECLARE VARIABLES ****
C

INTEGER*2 NUMB, MSEG, MOFF, PEEKW
MSEG = #FOOO
MOFF = #OOOO

C
C **** GET WORD AT MEMORY LOCATION ****
C

NUMB = PEEKW (MSEG, MOFF)
C

WRITE (*, 100) NUMB
100 FORMAT (IX, 'THE MEMORY WORD IS ', 17)

22

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY

END

POKEB (MSEG, MOFF, DATOB)

SUBROUTINES

This function allows the user to write a byte any where in
memory by defining the SEGMENT and OFFSET. The byte is
written to location MSEG:MOFF. This function is the same as
MOV ES:IOFFSET reg], reg. in 8088 assembly language. The
variables are INTEGER*2 type.

EXAMPLE:

C **** DECLARE VARIABLES ****

INTEGER*2 NUMB, MSEG, MOFF
C
C *** DECLARE SELECTED ADDRESS ***
C

MSEG = #FOOO
MOFF = #OUUU
DATOB = #lA

C **** WRITE BYTE AT MEMORY LOCATION ****
C

CALL POKEB (MSEG, MOFF, DATOB)
END

POKEW (MSEG, MOFF, DATOW)

This function is the same as the POKEB function except it
writes a 16 bit integer word to the selected memory
location. All variables are INTEGER*2 type also.

EXAMPLE:

C **** DECLARE VARIABLES ****
C

INTEGER*2 NUMB, MSEG, MOFF
MSEG = #FOOO
MOFF = #OOOO
DATOW = tlOA2

C
CALL POKEW (MSEG, MOFF, DATOW)
END

23

DASH-16 FORTRAN LIBRARY

LOCATE (ROW,

DESCRIPTION OF LIBRARY SUBROUTINES

COL)

This subroutine allows the user to locate the cursor to a . .
row, column location. . ._ The variables are expectea to be
INTEGER*2 type. If the Row, Co1 limits are exceeded the max
limits of the screen will be set by default.

EXAMPLE:
C
C ****** DECLARE VARIABLES ******
C

INTEGER*2 ROW, COL
C
C
C LOCATE THE CURSOR ON ROW 5, COLUMN 10
C

ROW = 5
COL = 10

C
CALL LOCATE (ROW, COL)

C
C
C LOCATE THE CURSOR ON COLUMN 3, ROW 19
C

CALL LOCATE (19,3)
END

24

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

CLRSCN (FG, BG)

This subroutine allows the user to clear the screen and set
the Foreground and Background color. The FG,BG color
variables are expected to be INTEGER*2 type. the color
selection is shown below. The color selection in the
background is limited to primary colors only.

COLOR TABLE FOR FG,BG

HEX COLOR HEX COLOR

00
01
02
03
04

0”;
07

BLACK 08 GRAY
BLUE 09 LIGHT BLUE
GREEN OA LIGHT GREEN
CYAN OB LIGHT CYAN
RED oc LIGHT RED
MAGENTA OD LIGHT MAGENTA
BROWN OE YELLOW
WHITE OF HIGH INTENSITY WHITE

EXAMPLE:
C
C **** CLEAR THE SCREEN SET BG = BLUE, FG = WHITE
C

CALL CLRSCN (#07, #Ol)
END

25

DASH-16 FORTRAN LIBRARY DESCRIPTION OF LIBRARY SUBROUTINES

3.00 LIBRARY MEMORY HAP (GLOBALS)

The following is a memory map of the DASlCFOR.LIB and the
associated GLOBAL Externals associated with each function.

Number Size Name Segment Name Date Version

1
2
3
4
5
6
7
a
9

10
11
12
13
14

:i
17
la
19
20
21
22
23
24
25

195H ADINIT ADINIT CODE 12 JAN 1985
lOA8H ADCONV ADCONV-CODE 11 DEC 1986

A8H DI6FIX D16FIX-CODE 12 JAN 1985
128H DMASTA DMASTA-CODE 12 JAN 1985
109H DMAOFF DMAOFF-CODE 12 JAN 1985
C7H CNTMIO CNTMIO-CODE 12 JAN 1985
C7H CNTMIl CNTMIl-CODE 12 JAN 1985
BEH CNTM12 CNTMI2CODE 12 JAN 1985
DEH CNTMOO CNTMOO-CODE 12 JAN 1985
DEH CNTMOl CNTMOl-CODE 12 JAN 1985
DCH CNTM02 CNTMOZ-CODE 12 JAN 1985

13CH DAOUT DAOUT CODE 12 JAN 1985
B8H DIGIN DIGIN-CODE 12 JAN 1985
B5H DIGOUT DIGOUT CODE 12 JAN 1985
SFH INPB INPB &DE 12 JAN 1985
8DH INPW INPW-CODE 12 JAN 1985
95H OUTB OUTB-CODE 12 JAN 1985
95H OUTW OUTW-CODE 12 JAN 1985
9EH PEEKB PEEKs CODE 12 JAN 1985
9CH PEEKW PEEKW-CODE 12 JAN 1985
A4H POKEB POKEB-CODE 12 JAN 1985
A4H POKEW POKEW-CODE 12 JAN 1985
BCH LOCATE LOCATE CODE 12 JAN 1985
B3H CLRSCN CLRSCNICODE 12 JAN 1985

1CBH DAS16EXT DATA 12 JAN 1985

GLOBAL VARIABLES (EXTERNALS)

PUBLIC VARIABLES DEFINED BY: DAS16EXT

BASADR DABUSY FNCH NOSOO
BCNTR DMACNT
BLKCNT DMAFLG INTLEV STCH

DMAINT STFNCH
DMAON KBDOFF SYSBSY
DMASF KBDSEG
DMAVEC TMPCTL
DMINXT MOD00

ALL PUBLIC VARIABLES ARE 2 BYTES [INTEGER*2]

26

DASH-16 FORTRAN LIBRARY USER REPORT

4.00 SERVICE PERFOFMANCE REPORT

This section is used for service of the DASH-16 Fortran
library. If any problems occur during operation please write
them down and mail the form to MetraByte Corporation. Be
sure to enclose your return address and telephone number
where you can be reached during the day.

LIBRARY:

Date Purchased

Fortran Version Used

Description of Problem :

27

DASH-16 FORTRAN LIBRARY USER REPORT

28

DASH-16 FORTRAN LIBRARY APPENDICES

APPENDIX A SAMPLE PROGRAM A/D UODE 5

C
C
C
C
C

:

E
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

*** METRABYTE CORP. DASH - 16 FORTRAN LIBRARY ***

This routine will collect 1024 points of channel 2 using
Counter 1 and 2 as an clock trigger and then display the
data in 5 columns of 20 rows each. This program is on the
disk supplied. The routine will display the Current
conversion on the screen in the foreground while data is
transferred in the background.

------ DECLARE VARIABLE TYPES FOR ROUTINE --------

INTEGER*2 DATIO, SCH, FCH, MODE, RTNFLG, BASADR, DMALEV
INTEGER*2 INTLEV, I, J, K, CNTO, CNTl, CNT2, NOS, NOC
INTEGER*2 DMASTA, DI6STATUS, DMAOFF, D16FIX, CHANX, DATX

_______ DIMENSION DATA ARRAY ______-_________

DIMENSION DATIO(1024)

------- SET UP VARIABLE(S) DATA -------------

MODE = 5
SCH = 2
FCH = 2
NOS = 1024
NOC = 0
BASADR = #300
DMALEV = 3
INTLEV = 2
RTNFLG = 0
CNTO = 0

---- CLEAR THE SCREEN BACKGROUND = BLUE,FOREGROUND

CALL CLRSCN (7,l)

= WHITE

----- INITIALIZE DASH-16 BOARD TO KNOWN STATE -----

CALL ADINIT (BASADR, DMALEV, INTLEV, RTNFLG)
IF (RTNFLG .EQ. 0) GOT0 20
CNTO =l
CALL ERROR (RTNFLG, CNTO)
GOT0 40

-- SETUP COUNTER 1 AND 2 FOR A TICK EVERY 10 MILLI-SEC --
TIME = (CNTl*CNT2)/10**6

29

DASH-16 FORTRAN LIBRARY APPENDICES

C
20

C
C
C

C
C
C
C
C

22

C
24

C
C
C
30

34

CNTl = 1000
CNT2 = 100

----- SETUP COUNTERS 1 AND 2 MODE 3 ----

CALL CNTMOl (3,CNTl)
CALL CNTM02 (3,CNT2)

_--- TURN OFF DIGITAL OUTPUT PORT 0 IF USED FOR GATE ----

CALL DIGOUT(0)

--- SETUP A/D FOR COLLECTION IN THE BACKGROUND (DMA) ---

CALL ADCONV (MODE, SCH, FCH, NOS, DATIO(l), RTNFLG)
IF (RTNFLG .EQ. 0) GOT0 22
CNTO = 2
CALL ERROR (RTNFLG, CNTO)
GOT0 40

---- DATA IS BEING COLLECTED IN THE BACKGROUND
LOOK AT THE STATUS IN THE FOREGROUND AND PRINT
SCREEN

WHILE WE
IT ON THE

CALL LOCATE (2,lO)
WRITE (*,'(A\)') ' IS THE NEXT CONVERSION NUMBER'

NOC = DMASTA (D16STATUS)
CALL LOCATE(2,2)
WRITE (*,'(15\)') NOC
IF (NOC .LE. #3F8) GOT0 24

---- SETUP TO DISPLAY DATA ON SCREEN ----

CALL CLRSCN(7,O)
CALL LOCATE (1,1)
WRITE (*, '(A\)') ' POINT# DATA'
CALL LOCATE (1,18)
WRITE (*, '(A\)') 'POINT# DATA'
CALL LOCATE (1,34)
WRITE (*, '(A\)') 'POINTR DATA'
CALL LOCATE (1,50)
WRITE (*, '(A\)') 'POINT# DATA'
CALL LOCATE (1,66)
WRITE (*, '(A\)') 'POINT# DATA'
J=l
I = 2
K=l

30

DASH-16 FORTRAN LIBRARY APPENDICES

35

36

C
C
C
40

C
C
C
C

C

51

IF (I .NE. 22) GOT0 36
I = 2
GOT0 35
CALL LOCATE (1,K)
WRITE (*,'(14\)') J
CALL LOCATE (I, (K+E))
DATX = D16FIX (DATIO(J), CHANX)
J = Jtl
IF (3 .GE. 1025) GOT0 40
I = .I+1
IF (I .NE. 22) GOT0 35
K = K+16
IF (K .GT. 70) GOT0 34
GOT0 35

------- END OF R"N _--__

CALL LOCATE (23,l)
STOP
END

------ SUBROUTINE FOR ERROR HANDLING ------

SUBROUTINE ERROR (X,Y)
INTEGER*2 X, Y

CALL LOCATE (23,l)
WRITE (*.51) X.Y
FORMAT‘(iX; ' ERROR IN DATA COLLECTION: RETURN FLG = ', 215)
RETURN
END

31

	TOC:

